249 research outputs found

    Double-crosses of Corn for Distribution in Minnesota

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu

    Convolution algebras: Relational convolution, generalised modalities and incidence algebras

    Get PDF
    Convolution is a ubiquitous operation in mathematics and computing. The Kripke semantics for substructural and interval logics motivates its study for quantale-valued functions relative to ternary relations. The resulting notion of relational convolution leads to generalised binary and unary modal operators for qualitative and quantitative models, and to more conventional variants, when ternary relations arise from identities over partial semigroups. Convolution-based semantics for fragments of categorial, linear and incidence (segment or interval) logics are provided as qualitative applications. Quantitative examples include algebras of durations and mean values in the duration calculus

    Reasoning algebraically about refinement on TSO architectures

    Get PDF
    The Total Store Order memory model is widely implemented by modern multicore architectures such as x86, where local buffers are used for optimisation, allowing limited forms of instruction reordering. The presence of buffers and hardware-controlled buffer flushes increases the level of non-determinism from the level specified by a program, complicating the already difficult task of concurrent programming. This paper presents a new notion of refinement for weak memory models, based on the observation that pending writes to a process' local variables may be treated as if the effect of the update has already occurred in shared memory. We develop an interval-based model with algebraic rules for various programming constructs. In this framework, several decomposition rules for our new notion of refinement are developed. We apply our approach to verify the spinlock algorithm from the literature

    Formal change impact analyses for emulated control software

    Get PDF
    Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original system’s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly

    Combined results on b-hadron production rates and decay properties

    Get PDF
    Combined results on b-hadron lifetimes, b-hadron production rates, B^0_d - \bar{B^0_d} and B^0_S - \bar{B^0_s} oscillations, the decay width difference between the mass eigenstates of the B^0_s - \bar{B^0_s} system, the average number of c and \bar{c} quarks in b-hadron decays, and searches for CP violation in the B^0_d - \bar{B-0_d} system are presented. They have been obtained from published and preliminary measurements available in Summer 2000 from the ALEPH, CDF, DELPHI, L3, OPAL and SLD Collaborations. These results have been used to determine the parameters of the CKM unitarity triangle

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for Bs0B^{0}_{s} oscillations using inclusive lepton events

    Get PDF
    A search for Bs oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the prop er time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to Bs mixing is obtained by identifying subsamples of events having a Bs purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Dms>9.5 ps-1 at 95% CL. Combining with the ALEPH Ds based analyses yields Dms>9.6 ps-1 at 95% CL.A search for B0s oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the proper time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to B0s mixing is obtained by identifying subsamples of events having a B0s purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Deltam_s>9.5ps^-1 at 95% CL. Combining with the ALEPH D-s based analyses yields Deltam_s>9.6ps^-1 at 95% CL
    • 

    corecore